OU/AEC/EER 53-5

TECHNICAL REPORT

COCKPIT WEATHER RADAR DISPLAY DEMONSTRATOR
AND

GROUND-TO-AIR SFERICS TELEMETRY SYSTEM

Described is a course-up cockpit weather radar
display demonstrator that simulates aircraft
translation and rotation of uplinked weather
radar information based on aircraft speed and
heading. Also described is a system to uplink to
a display in an aircraft, sferic weather infor-
mation, from a 3M-Ryan Stormscope. This includes
a method of recording and playback of sferic data.

by
James D. Nickum, P.E.
Daryl L. McCall
Avionics Engineering Center

Department of Electrical Engineering

Ohio University
Athens, Ohio 45701

FINAL REPORT

December 1981 - December 1982

Prepared for
National Aeronautics and Space Administration

Langley Research Center
Hampton, Virginia

Grant NAG-1-124

TABLE OF CONTENTS

List of Figures

I.

1I1.

I1I1.

iv,.

V.

INTRODUCTION

COCKPIT WEATHER RADAR DEMONSTRATOR DISPLAY

A.

B.

c.

D.

E.

General Description

1. Initial Weather Radar Data Acquisition
2. Matrox Video Display Boards

3. Rockwell AIM-65 Microcomputer

4, LSI-1ll to AIM-65 Buss Interface

Custom Interface Description
Software Definition of the CWRDD
Cockpit Weather Radar Demonstrator Results

Recommendations

GROUND-TO-AIR SFERICS TELEMETRY SYSTEM

A.

B.

C.

D.

Background

Uplink System Overview
Transmitter Operations
1, Hardware

2. Software

Receiver Operation

l. Hardware

2. Software

The RF Link

Conclusions and Recommendations

BIBLIOGRAPHY

ACKNOWLEDGEMENTS

PAGE

iii

SN N

IS

14

14

21
21
21
23
23
25
27
27
29
35

35

37

38

TABLE OF CONTENTS (CONT'D.)

PAGE
APPENDICES 39
A. FORTH Software Description for CWRDD 40
B. Custom Interface Description 52
C. Transmitter Schematic 58
D. Receiver Schematic 59
E. Component Board Layout 60
F. Software 61
1. Transmit 62
2. Receive 66

G. Photographs 71

Figure

Figure

Figure
Figure

Figure

Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

2-60
2_70

2—8-

2-9 .

2-10

2-11

2-12

3-1,
3-2,
3-3,
3-4,
3-5,
3-6.
3-7.

3"8 .

LIST OF FIGURES

Weather Radar Data Acquisition Block Diagram.

Cockpit Weather Radar Demonstrator Display
Block Diagram.

Software Bench Test Set—-Up for CWRDD.
Matrox Display Board and Q-BUS Card Cage.

Rear View of Card Cage and Custom Interface
Card.

CWRDD Format and Calculations.
Simple Block Diagram of Software for CWRDD.

Video Display with Aircraft Heading 360° and
Aircraft Position as Shown.

Video Display Aircraft Translated 7 Nm North
with AC Heading 040°,

Video Display, Aircraft Translated Along 040°
7 Nm, Aircraft Heading 040°,

Video Display After AC Heading Change to
329°,

Video Display After Translation on 329°
Heading.

System Block Diagram.

System Memory Map.

Transmitter NMI Service Routine.
Transmitter Main Program Loop.
SEND Subroutine.

STATUS Register.

Receiver NMI Service Routine.

Recelver Software MAIN Loop.

PAGE

10
13

15

16

17

18

19

22
24
26
26
28
30
31

31

Figure
Figure
Figure
Figure
Figure
Figure

Figure

3-9.

3—100

3_11 .

B_l .

B"'Z .

B"'3 .

B-4.

LIST OF FIGURES (CONT'D.)

SYNC (and SAVE) Subroutine.

DISPLAY Subroutine.

CLEAR Subroutine.

Custom Interface; BUS to AIM-65.

Custom Interface Composite Sync Generator.
Custom Interface Joystick.

Custom Interface Parts Layout.

PAGE

32

33

33

53

54

56

57

I. INTRODUCTION

This report details the results of two methods of obtaining timely
and accurate severe weather presentations in the cockpit. The first method
described is a course-up display of uplinked weather radar data. This
involves the construction of a demonstrator that will show the feasibility
of producing a course—up display in the cockpit of the NASA simulator at
Langley. A set of software algorithms have been designed that could easily
be implemented, along with data tapes generated, to provide the cockpit
simulation. The second method described in this report involves the
uplinking of sferic data from a ground-based 3M-Ryan Stormscope. The tech-
nique involves transfer of the data on the CRT of the Stormscope to a
remote CRT. This sferic uplink and display could also be included in an
implementation on the NASA cockpit simulator, allowing evaluation of pilot
responses based on real Stormscope data.

The combination of these two simulation capabilities should increase
the ability of NASA Langley personnel to develop better man/machine inter-—
faces for decreased workload and improved, accurate transfer of information
to the pilot.

1I. COCKPIT WEATHER RADAR DEMONSTRATOR DISPLAY

A. General Description

1., Initial Weather Radar Data Acquisition. The recordings of the
weather radar for this demonstration were made at the Port Columbus Airport
National Weather Service Facility which operates a WSR-74C weather radar
that is equipped with an Enterprise Weather Radar Scan Converter. The
recordings were made with a standard half-inch video tape recorder that was
connected to the monitor used with the Enterprise system. All of the
overlays except for the color intensity legend were turned off for the
period of making the recordings. Approximately four hours of continuous
weather activity was recorded on June 15, 1982 as a cold front passed
through the Columbus, Ohio area.

On returning from Port Columbus, the weather radar data on video
tape was re-recorded in a form that would allow better presentation to the
cockpit weather radar display demonstrator (CWRDD). Figure 2.1 is a block
diagram of the data acquistion and re-recording setup. The re-recording
was necessary to facilitate the acquisition by the Matrox Frame Grabber of
a complete updated radar display.

In the Enterprise system, a complete update of the radar display
occurs every two minutes. During this time a complete radar display is
available, but the display is updating radially through a complete
360—-degree arc. The re-recording allows freezing a video frame when the
update reaches the 360-degree position in the sweep and holding that radar
display for the two-minute interval while the radar display 1is being
updated. This then produces a video tape with clean radar display frames
that will be input to the CWRDD during a simulated flight.

2. Matrox Video Display Boards. The central part of the display
system is the Matrox Video display boards. This system consists of a
display board and a frame grabber board which are designed LSI-11 com—
patible [1,2]. The display board will produce NTSC compatible video with a
picture consisting of 256 x 256 pixels with a gray scale of 16 levels.
This can be expanded easily to 256 levels by addition of a second display
board and appropriate control strapping. The display boards are also
capable of pseudo-color operation which allows colors to be displayed as a
function of the gray scale value.

Video frames can be loaded into memory very easily with the Matrox
frame grabber, which can digitize and store in the display memory the video
information on the input during a single vertical frame interval. This is
used to grab a frame of video from the video tape recorder for display on
the CWRDD. A Rockwell AIM-65 microcomputer was used to perform the inter-
face and computation necessary for the CWRDD unit. A custom interface was
designed so that the LSI-11 interface of the Matrox boards would operate
with the AIM-65. The Matrox boards are easy to use and provide access to
the display memory on a pixel addressing basis which allows access to any
pixel value either for modification or examination.

‘wpibpiq 20|g uol}isinboy pipQ JopRY JAYIPIA\ ° |~ anbBi

24OM}JOG
Bu1jdwog awbiy A
josuo)
pipog

SPVHOS G -WIV [€ aoDyI94U| pup RqpIS LA
H13O04d woysny Apjdsiq swpig

96T X 96¢C

XO¥LVW
olyo ‘snquinjo)) }jiog
d1A Joppy Jayipap

J ¥L - ¥SM

-3-

3. Rockwell ATM-65 Microcomputer. The computer used to control the
Matrox video boards is the AIM-65, which was chosen for its simplicity and
access to necessary software and development tools [3]., The AIM-65 used is
equipped with 4K of RAM and the standard 8K monitor ROM. In addition to
this is an 8K FORTH software package and a 4K floating point software
package that is used for trigonometric function availability. The FORTH
software package allows the rapid development of software for the CWRDD
allowing easy interface to assembly routines necessary for the interface
between the AIM-65 and the Matrox boards [4]. Additionally, FORTH provides
a faster run time environment than BASIC while still maintaining the higher
level software development available in a structurable language. To imple-
ment sines and cosines, the AIM-65 floating point software package, which
occupies 4K of ROM memory, was used [5]. The total software development
design for this CWRDD task was approximately three months. Appendix A con-
tains details of software development.

4, LSI-11 to AIM-65 Buss Interface. The hardware interface
designed for the CWRDD is described in detail in Appendix B. Essentially,
this interface will allow the transfer of data and addresses from the
bidirectional 16-bit data and address buss of the LSI-11 to the 16-bit
address and 8-bit data buss of the AIM-65. The design of this interface
relies primarily on software to affect the exchange of data. Typical times
for transfer of data are 135 yus using this interface. A complete hardware
implementation could decrease the transfer time to about 15 to 20 us. 1In
order to demonstrate the CWRDD, it was decided that the slower software
rate would be adequate since this system was never intended to interface
directly with the cockpit simulator, but only as a way to demonstrate and
develop the necessary concepts and algorithms.

Also included in Appendix B is the schematic for a joystick that is
used by the CWRDD to input heading and speed information for the transla-
tion and rotation of the weather information in a course-up display mode.

B. Custom Interface Description

Figure 2.2 is a block diagram of the hardware used to produce the
CWRDD. The AIM~65 computer executes a FORTH program that controls the
frame grabber and display board to produce the translated and rotated
course—up display on the monitor. The joystick is used to input speed and
heading commands to the software for user interaction.

The custom interface provides two functions. First, it provides the
necessary timing and hardware to transfer data across the Q-BUS to AIM-65
Busses. The Q-BUS is a combined 16-bit address and data buss with the
AIM-65 using a 16-bit address and 8-bit data buss. Therefore, necessary
timing and buffering is required to transfer data and addresses to the
Matrox display and frame grabber boards. The second function of the custom
interface is that the Matrox display board must have video sync to operate
properly. The sync must be derived from the VIR while digitizing the video
from the VIR, but using the VTR sync for display of the weather information
on the monitor is not optimum as some jitter is present.

*wpibpiq pojg Ap|dsiqg Jojpijsuowa Joppy Joypap\ 20Dy "7z ainbiy
"AQYMD Jo3 A|[po14109ds
Jayusn) Bupsauibug sojuoiay yp paubisep sajoa1pul,
JOLINOW
o o O O
31DM 440G
) ¥
aaimdo o yshof
O3pIA
JSIN
w
WOy uy Jayndwor) * [044u0)) pup
8.0M}j0g aopyJa4u| Aiowapy 0apIA
jusog Buiypo| 4 g9 - WIv < Apjdsig e Um._..Z
pup 41304 [|aM>20Y SN4 O 9cz x.omN awbi
WOILSND XOULWW

LA

-5-

It was decided that switching the sync from the VIR to an external
sync generator would solve the problem. A simple sync generator is
included on the custom interface card and the composite sync output is con-
nected to one of the video inputs of the frame grabber. The VIR output is
connected to another of the video inputs of the frame grabber. Under soft-
ware control, when a frame is to be digitized from the VIR, the sync input
is switched to the VTR. After the frame is digitized, the video input is
switched back to the sync generator on the custom interface card. This
provides stable sync for good monitor viewing.

Figures 2.3, 2.4, and 2.5 are photographs of the hardware used in
the CWRDD described here. Because the CWRDD is a feasibility demonstrator,
no special packaging is provided.

C. Software Definition of the CWRDD

The simplifications that are described here were made only to make
the completion of the task progress more quickly. These simplifications do
not affect the ability to produce a working CWRDD for the NASA simulator
because they affect only the implementation on the AIM-65 and the interface
to the Matrox boards. The basic translation and rotation algorithms remain
the same and, therefore, can be transported through FORTRAN implementation
on the NASA simulator.

Figure 2.6 indicates the format of the display of the CWRDD. Note
that the input weather radar display and the rotated cockpit weather
display are shown on the same frame. This was necessary because only one
display board was available for the development of the project.

The maximum distance scale for the WSR-74C weather radar video frames
provides a 230 km range. This provides, on the Matrox video display
boards, a 0.97 x 0.97 nautical mile, square pixel scale for the display.
The part of the display that shows the course—up weather was chosen to be
52 x 52 pixels which translates into a displayed area of approximately 50 x
50 nm. The aircraft was chosen to be placed along the vertical bisector of
the course-up display and 5 pixels, or approximately 5 nm from the rear of
the course-up display.

This display format was chosen as a compromise of several parameters
which include the number of pixels in each course—up display and the abil-
ity to make the course-up display similar to the type of display currently
used in airborne weather radars. One advantage is that there is a certain
amount of rear vision with this scheme. This could be extended further by
placing the aircraft at the center of the course-up display area, thereby
allowing weather information display in all directions around the aircraft.

The course—up display is placed in the lower right portion of the
actual north-up weather display. This allows viewing the course-up display
on the same monitor as the north-up weather display, for easier software
development interaction.

*AQIMD 03 dn-43G 53] yousg aIpMyjog °p-z aInbiy

Figure 2-4. Matrox Display Board and Q=BUS Card Cage.

Figure 2-5. Rear View of Card Cage and Custom
Interface Card.

©, 0 (255, 0)
H O
Starting North-up
(x,y) x',y") Display Frame
- MATROX
Memory Weather
Radar North=up
§ Calculated Course-up Display
(xac, yac Display Frame

Aircraft Position
8 = Aircraft Heading

Course-up

Display Frame

0
.,
(219, 199) = (xda, yda)
(0,255)
-5 26
For each y y X
47 -26

x' x cos(h) - y sin(h) xac
£(X4q,Yq) = = +
y' x sin(h) + y cos(h) yac
' xda
£(Xq,Yq) = +
y' yda
xda 219
where =
yda 199

h = 360° - @

Figure 2-6. CWRDD Format and Calculations.

-10-

ﬁ
(255, 255)

The actual calculations to perform the translation and rotation of
the course—up display use simple equations to translate and rotate, in two

dimensions, the cartesian coordinate system [6]. The two equations are the
following:

X x cos(h) - y sin(h) + dx

y' = x sin(h) + y cos(h) + dy

Where (x,y) = coordinates of pixel in north up display field
(52 x 52 pixel area)

(x',y') = coordinates of pixel to be deposited in course-up
display

h = aircraft heading

(dx,dy) = coordinates of aircraft position in total weather
display frame

For each y, which varies from 47 to -5, x varies from -26 to 26 rela-
tive to the aircraft position, This produces a top-to-bottom, left-to-
right update of the course-up display frame.

The aircraft position is considered the origin of the coordinate
system which, in our case, allows easy translation for "lifting” the 52 x
52 display space from the north-up display and placing it in the course-up
display (CUD) space (addition of a constant to each pixel coordinate). The
rotation has already been applied in selecting the correct pixel from the
north~up weather display. In figure 2.6 the starting frame is located
around the aircraft position in the north-up display (NUD) by assigning
aircraft position as the origin of this frame then values of (x,y) are
transformed into (x',y') values. The intensity value of (x',y') is read
and then written into the same position as that of the NUD only translated
to the CUD (Xd,Yd). In this manner the appropriate weather information is
seen in course—up fashion. Since the sense of the trigonometric angles
(counter clockwise) and the aircraft heading (clockwise) are opposite, the
aircraft heading (h) in these calculations needs to be complemented. The
difference of 90 degrees from the trigonometric definition of O degree and
the aircraft heading of 0 degree is inconsequential since we are dealing
with relative angles.

The complete equations for the displaying of course—up weather radar
information used in this demonstrator are as follows:

The following calculations are made, for each value of y from 47 to
-5, x is varied from —26 to 26,

x' x cos(h) - y sin(h) xac

f(x',y') = = +
y! x sin(h) + y sin(h) yac

=11~

1

b4 xda Xd
f(Xd,¥d) = + =
y' yda Yd

(xda, yda) = (219, 199) = coordinates of aircraft in north—up memory
plane coordinates which locate origin of
course—up display.

(xac, yac) = coordinates of aircraft position in weather display
area.

(Xd, Yd) = coordinates in course—up display that correspond to (x,y)
coordinates in the north~up display field.

h = 360 - (aircraft heading)

The north—up memory display coordinates (xda, yda) values of (219,
199) were chosen to place the course—up display frame in the bottom right
side of the north—up display but to keep it far enough from the edge of the
CRT screen edge to allow good viewing qualities. Changing these coor—
dinates will move the area where the course—up display field is presented.
This translation would not be necessary with the implementation on the NASA
simulator because only the course-up display is required.

The above calculations are performed for each of the 2704 pixels in
the 52 x 52 course—up display frame. These calculations are performed in
approximately 20 seconds which provide the course-up display frame rate.

In the cockpit weather demonstrator presented here, the speed of the
aircraft 1is controlled by a value input by the position of a joysticke The
heading of the aircraft is input in the same way. The apparent motion of
the alrcraft through the weather is performed by modifying the coordinates
of the aircraft position in the NUD. A complete display frame (52 x 52) is
rotated by the heading input. Pixel intensity values relating to the NUD
are stored in their relative positions in the CUD, as explained in detail
above. This then provides aircraft (AC) motion in course-up sense around
the north—up weather display.

For this demonstrator the speed is allowed to vary from 3 to 30
nm/min. which represent 180 to 1800 nm/hr. Due to the approximately
20-gecond per frame update rate, a change of 1 pixel per 20 seconds
provides 180 nm/hr and 10 pixels per 20 seconds provides 1800 mm/hr. The
faster AC speeds allow easier indications of AC movement around the
weather. The weather movement with respect to the geographic positions are
provided by the weather radar video update digitized from the recorded
weather radar data which updates every 2 minutes,

Figure 2.7 is a flow diagram of the FORTH software to perform the

CWRDD function. The detalled software is described in Appendix A including
a complete FORTH listing.

=12~

Initialize Parameters

2 Minutes Elapsed YES

Freeze Frame from VIR

NO l

N
Compute Sine of:Argle
Cosinecof Angle and- .~
&Gle;’)-» Ke o Di

Generdte 52 x 52 Matrix.

for Cockpit Display from
256 x 256 Radar Display

Determine Speed and Angle

from Joystick and Save in
Parameters

Figure 2-7. Simple Block Diagram of Software for CWRDD.

-13-

D. Cockpit Weather Radar Demonstrator Results

The cockpit weather radar demonstrator, using the calculations
described above, does indicate a course—up display of aircraft motion with
respect to the weather radar display. Using the joystick, the weather
radar information that is in the course—up display frame translates and
rotates based on the commanded heading and speed. The course—up display
frame contents update at approximately a 20-second rate. This is slow, but
the ability to demonstrate the algorithm is still valid. Faster and/or
slower update rates will be achieved by implementation on the NASA simula-
tor.

Figures 2.8 to 2.12 indicate a sequence of aircraft translation and
rotation relative to the weather radar data display. Figure 2,8 indicates
the aircraft on a heading of 360 degrees at approximately the center of the
weather radar display. The next frame, figure 2.9, shows the aircraft on a
045-degree heading with the aircraft position still in the center of the
weather radar display. The third frame, figure 2.10, shows the aircraft
after translation along a heading of 040 degrees. Figure 2.11 now indica-
tes the aircraft and course—-up display after turning to a heading of 329
degrees. Finally, figure 2.12 shows the aircraft after translation along
this 329-degree heading.

As demonstrated in these photographs of the CRT display the cockpit
weather radar demonstrator is capable of producing course-up radar displays
of simulated uplinked radar data. The calculations necessary to perform
this course-up display are very simple and only the sheer volume of calcu-
lations and small computer implementation have resulted in slow frame
update rate.

E. Recommendations

Based on the simplicity of the display algorithms and available speed
of the NASA simulator computer, implementation of this concept in the NASA
cockpit simulator is possible. Additionally, using a 16-bit microcomputer,
hardware multiply, and look-up—-table sines and cosines could produce an
order of magnitude or better speed improvements of a system that could be
used in operational aircraft.

Certain trade—offs of update rate vs. display field size can provide
an acceptable display of course-up weather information in the cockpit.
Certain functions such as cruise or maneuver modes could be added.

Maneuver mode could be used when course changes of more than *5 degrees are
to take place. This would switch the course-up display field size to make
it smaller and increase update rate at the expense of maximum look-ahead.
In the cruise mode, this would allow a greater course-up display frame size
for greater look—ahead capability. This would be acceptable because the
translation at general aviation speeds 1is relatively slow.

For example, if the aircraft is moving with a speed of 180 nm/hr and
no heading changes or small heading changes are made, the course—up display

~14-

Figure 2-8. Video Display with Aircraft Heading 360° and Aircraft
Position as Shown.

-15-

Figure 2-9.

\

‘I:!r NILERNRY

e

g

Video Display Aircraft Translated 7 Nm North with AC
Heading 040°,

iB=

'.'r‘

““. Sl

"

\

l

Figure 2-10. Video Display, Aircraft Translated Along 040° 7 Nm,
Aircraft Heading 040°,

-17-

Figure 2-11. Video Display After AC Heading Change to 329°.

-18-

P
_— a.
- - - = -
= - = - =
- - -
= I
-

'
[l

Sal
4
ot
ol

e,.,".-": s o
RTEN

! .u‘.l. l'l‘".f

’

-

Figure 2-12. Video Display After Translation on 329° Heading.

-19-

will remain constant for at least 20 seconds. If it takes 20 seconds to

translate or rotate the maximum course-up display size (in our case 256 x
256 nm), then this cruise mode will allow greater look—ahead capability

with no real decrease in display capability.

-20-

I1I. GROUND-TO-AIR SFERICS TELEMETRY SYSTEM
A. Background

Until recently, the accepted means for detecting and analyzing
weather activity was to use the reflectivity pattern obtained from a
weather radar. Although today's technology has refined weather radar to
obtain higher quality information, it has failed to increase its prac-—
ticability in single engine aircraft and decrease the cost to the point
where it is affordable to many commercial or general-aviation users.

An alternative to the active detection of weather is to use a passive
sferics detector. This method has been gaining support, and several
sferics detectors are available. The 3M-Ryan Stormscope Company produces a
line of detectors that is geared for use with aircraft. Unlike weather
radar, the Stormscope is affordable to more aircraft owners, and, since the
sensing unit for the Stormscope has a very low profile, it can be installed
in most aircraft with relative ease and very little effect upon the
aircraft's aerodynamic performance.

The theory behind Stormscope is based upon the fact that statisti-
cally, most lightning is due to the electric potential generated within a
thunderstorm, which, in turn, is due to the high convective currents pro-
duced with thunderstorms. Thus, if one avoids the areas of high electrical
discharge, one will reduce the chances of being struck by lightning and,
perhaps more important, avoid areas of high wind shear and resulting tur-
bulence. :

The 3M-Ryan Stormscope 18 capable of detecting and analyzing the
electromagnetic properties of these discharges, and displaying the approxi-
mate range and bearing of such events. Since weather radar is capable of
detecting only precipitation, it has been thought that a composite picture
of the weather radar reflectivity pattern and the Stormscope could provide
a more complete and detailed picture of the weather activity.

Due to the logistics of this task, it was deemed necessary that the
composite picture would be derived at a fixed ground location and teleme-
tered to the local air traffic. This paper documents the design and opera-
tion of a sferics-only, prototype uplink system, which could be
incorporated into a composite radar/sferics uplink system.

B. Uplink System Overview

The uplink system can be broken into two major parts, the transmitter
and receiver (see figure 3-1). The transmitter interfaces with the
Stormscope, collecting data when made available by the Stormscope. This
data has two forms, valid horizontal/vertical deflection voltages and
memory erasures. The KIM microprocessor mimics the Stormscope memory con-—
figuration [7] and sequentially either erases or updates the current memory
locations.

-21-

A =4

*woiBoig }20|g WaysAg ¢ |-¢ 24nbi

ado2s50| {1250

N

Bupjuojg

v/ —zgor|

<\Q|Hm.uﬂlv. Ooe (O

O

3
. vy
‘ uj
dr sed VN _%m.._ UOJSIDAUOT WIGOW
Emnﬂ\ W1l AJ%_& u, 111/2€28Y
£} P
COWP_0>COU 1] ¢ n_l
SNVYL IPHS | avn
W3aowle ey e le—
N n Agdauj WIN
<SSPy

JIAID I

dAY
EL

\

d3L1LIWSNVYL

adooswioyg

&

-22-

As new pieces of data arrive (either updates or erasures), the
microprocessor encodes and loads the parallel data into a universal
asynchronous receiver/transmitter (UART) serializer. The UART then
transmits the data serially to a device that converts the TTL levels to
standard RS-232 levels. The RS-232 serial data is then fed to a modem
which in turn drives the input to the RF transmitter.

The RF receiver of the uplink recovers the RF, detects the data and
feeds it to a modem. The modem provides RS-232 levels for a RS-232/TTL
level convertor, providing the serial TTL level data for the receiver's
UART. The UART converts the serial data to parallel data for the micropro-
cessor, and the microprocessor decodes the data and feeds it to the
appropriate digital-to-analog convertor. These analog convertors provide
the horizontal and vertical deflection voltages to drive an oscilloscope.
The microprocessor duplicates the blanking signal, required so that the
beam is off while being repositioned. The display effectively looks the
same as the Stormscope, with the circular reference lines derived in video
as opposed to the Stormscope screen overlay.

C. Transmitter Operations

The transmitting portion of the uplink receives the data from the
Stormscope, encodes the data, converts it to a serial format (RS-232
compatible), and then transmits the data via a RF link. See Appendix C for
a schematic dlagram.

1, Hardware. A non—-inverting, open collector buffer has been
installed In the Stormscope, thus allowing access to the digital horizontal
. deflection data, digital vertical deflection data, the Master Clock (MCK),
and the Write Gate (WG). The pull-up resistors for the buffer outputs are
provided in the data acquisition circuit, attached to the inputs which the
open collectors are driving.

The data acquisition circuit latches the digital deflection voltage
data and produces a Non-Maskable Interrupt (NMI), upon receiving a high
Write Gate and Master Clock from the Stormscope, on the outputs of the
74LS174, The outputs are read through the peripheral interface adapter
(PIA) of the microprocessor during the NMI service routine.

During the background routine, the microprocessor encodes the
received data by complementing the leading bit of a deflection voltage
pair, the horizontal byte being sent first and the vertical byte last.
Encoding is used so every horizontal data byte can be matched with its
proper vertical component using simple correlation techniques in the
receiver software. Unmatched data bytes will be totally ignored.

Once the data has been properly encoded, it may be sent to the UART
to be converted to a serial format. The UART is accessed at any address in
the 08X0H (H denotes a hexadecimal number) block (see figure 3-2); however,
the software only recognizes the lowest of these addresses (i.e., O800H).
The data to be changed to serial format is stored at this address. The

=23-

KIM
ADDRESS
DECODE

PIN

K4

K3

K2

K1

ADDRESS

13FF
1000

OFFF
0Co0

OBFF
0800

Q7FF
0400

ANVANWAWA

APPLICATION

2K ROM (2716)

1K UART (AY-5-1013)

1K RAM
(6116, ONLY FIRST 1K ACCESSED)

Figure 3-2. System Memory Map.

24~

7418374 is address—encoded so that the information on the data bus is
latched to its outputs when the address 08X0H (hexadecimal) is placed on
the address bus. This allows the data to be loaded into the AY-5-1013
UART. Once the data has been loaded, and the UART has acknowledged that
the previous character has been sent (via PIA port PA6), the UART is
strobed to send by writing to address 08X1H. This produces a pulse to
strobe the UART (again, note that the software uses the lowest of these
addresses, 0801H).

The AY-5-1013 is programmed to send eight data bits without parity,
two stop bits, and can transmit at either 300 baud or 1200 baud. The only
control lines used in this design are End of Character (EOC; a low on this
line indicates the UART is waiting for a Data Strobe) and Data Strobe (DS;
a low on this line instructs the UART to send data).

The serial data must now be converted from TTL levels to RS-232C
levels. This is conveniently done by using a DS1488 line driver.
TTL~level serial data is input and RS-232C compatible serial data is pro-
duced. This data is then fed to a standard computer modem. The modem con-
verts the data from RS-232C digital pulses to frequency shift keying (FSK)
format. For FSK, the frequencies used are in the audio range, and these
are input to a VHF transmitter for relaying to the aircraft.

2. Software. The software used to control the described hardware
was generated from the 6502 MPU assembler, available from the Ohio
University IBM VM/370 system. The program is responsible for system ini-
tialization and all system operations. See Appendix F for complete soft-
ware listings and figures 3-3 through 3-5 for all transmitter software
flowcharts.

a. NMI Service Routine. Upon receiving an NMI, software control
is removed from the background routine to the NMI service routine (see
figure 3-3). The service routine will store the A and X registers and load
X with the UART Data Index Pointer (UPNT). The UPNT, when used in conjunc-
tion with the indexed addressing mode, will mask and place the new data in
a location just following the previous data and then be incremented by one.
The NMI service routine then restores the A and X registers and exits the
service routine,

The memory allocation for all of the received data is 256 bytes for
the horizontal data and 256 bytes for the vertical data; therefore, the
UPNT will be reset to zero automatically when incremented after it has
attained the value of FFH. This also means that the service routine will
begin to write over old data once 256 byte pairs of data have been
received. It has been calculated and found in practice that the data flow
from the Stormscope is slow enough for the background routine to process
0ld data before the data destruction process begins.

b. Background Routine. The background routine has a counterpart
to the UPNT of the NMI service routine; it is called the Data Available
Index Pointer (DAVPNT). Upon receiving a reset or a spurious interrupt
request (IRQ) (see figure 3-4), the background routine zeroes the DAVPNT,

-25-

NMI Acknowledge Reset, IRQ

v \

Store . .
A and X Init pointer,
registers flags, and 1/O

\A %

Fetch and store Get DAVPNT
pointer (DAVPNT) N
Get UART data DAVPNT
UPNT?
Mask
unnecessary bits
Store pointer
(UPNT)
Store data and W/
increment pointer
Fetch data fl
(DAVPNT) e(; AT:L &) 9
N
Restore registers
No Get data
m and set MSB
o N
Complement
DATGLG ond clear
ondG:IL::t:ASB M3B next time
Complement
DATFLG and set N/
MSB next time
V_ 1
Subroutine
SEND
VA
< Increment
o~ UPNT
Figure 3-3. Transmitter NMI
Service Routine. Figure 3-4, Transmitter Main Program Loop.

=26~

UPNT, Data Flag (DATFLG), and initializes all of the I/0O ports. The
routine then enters an interrogation loop, which constantly compares the
DAVPNT to the UPNT. Obviously, when data is available the UPNT will be
unequal to the DAVPNT.

Once it has been determined that the two pointers are unequal, the
background routine stores UPNT in the X register and reads the DATFLG. The
DATFLG is used to determine whether the matched data pairs should be
encoded with ones or zeroes and turns program control over to the proper
encoding routine. For example, if it is found that DATFLG is equal to
zero, then the leading bit of the matched horizontal and vertical data
bytes will each be zeroed by sending program control to the zero routine
(this zeroes the leading bit of the matched horizontal and vertical data
bytes). In this way, the receiving part of the uplink can match the hori-
zontal with its proper vertical component. Upon leaving the encoding
routine (either ZERO or ONE), the DATFLG is set so that the complement of
the current leading bit is used during the next iteration.

Program control is now turned over to the SEND routine (see figure
3-5). This individually removes the encoded data pair from memory, loads
it in the UART data buffer and then strobes the UART on the DS control
line. The falling edge of DS loads the data into the UART's internal data
registers and the rising edge initiates the serial transmission. The
program then enters another interrogation loop that reads the EOC until it
goes high indicating that the data transmission is complete and another
character can be sent. It was decided to send the horizontal byte first,
immediately followed by the vertical byte.

Once the vertical byte has been sent, program control is sent back to
background routine, where UPNT is incremented and the process begins again.
If DAVPNT is still unequal to UPNT, data processing continues. If DAVPNT
is equal to UPNT, this indicates that the background routine has caught up
with the NMI service routine and that no new data is available for
transmission.

D. Receiver Operation

The receiving portion of the uplink receives the data, converts it to
parallel form, decodes the data, feeds the D/A convertors with the proper

data bytes, and provides a blanking signal to display the Stormscope image.
The schematic in Appendix D illustrates.

1. Hardware. The data is first received by the RF receiver, which
converts the modulated data into FSK audio data; this in turn is changed
into digital RS-232C pulses by the computer modem. The RS-232C format
pulses relayed by the modem are converted into TTL levels by the DS1489
line drivers.

The TTL level serial data is then fed into an AY-5-1013 UART, con-

figured in the receiver mode. Once the complete serial string has entered
the UART, the Data Available (DAV) goes high. This line is inverted and

-27-

JSR SEND

Vi

Load UART
with data

§

Interrogate EQC
of UART

UART ready?

Strobe UART
to send

y

Delay~417 psec.

b

Interrogate EQOC
of UART

UART started?

Exit
subroutine

Figure 3-5. SEND Subroutine.

-28-

fed into the NMI of the microprocessor, signaling that a data byte is ready
to be read into memory. The receiving UART is address encoded in much the
same way as the transmitting UART. The UART is read at address 080XH;
however, the software only recognizes address 0800H. The UART is read when
a NMI is received. Addressing the UART in the read mode allows Received
Data Available (RDE) to go low, thus allowing the parallel data buffers to
be output on the microprocessor's data bus.

The NMI service routine reads the data from the UART and stores it in
temporary memory. In the background routine, the available data is placed
in one of two (horizontal and vertical) 128-slot recirculating memories.

As in the recirculating shift registers of the Stormscope, after the first
128 pieces of data have been stored, every succeeding data will write over
0old data. The receiving portion of the uplink contains 128 locations of

memory to duplicate the capabilites of the 3M/Ryan Stormscope Model WX-7A.

To display this data, the microprocessor will continually pick
corresponding data bytes (horizontal and vertical) from these two memory
vectors and write them to their respective digital-to-—-analog convertors
(D/A). The D/A convertors used in this system are the AD558 DACPORTs, and
they are memory-mapped to addresses 08XOH for the horizontal deflection
voltage and 08X1H for the vertical deflection voltages. As before, the
receiver software only recognizes 0800H and 0801H for horizontal and ver-
tical, respectively. Once the D/A convertors have been programmed, the
microprocessor provides a blanking/unblanking signal to the Z axis of the
oscilloscope to turn the beam of the CRT display on, once the beam has been
properly positioned. This signal is provided through PIA port A, output
number PAO.

2. Software. The receiver software is responsible for reading the
UART for new parallel data upon receiving an NMI, continually displaying
the data in its recirculating horizontal and vertical memories, and provide
a blanking/unblanking pulse to the Z axis of the CRT display. See figures
3-7 through 3-11 for software flow charts and Appendix D for software
listings.

a. NMI Service Routine. On the occurrence of an NMI, control is
transferred to the NMI servicing software (see figure 3-7). The service
routine first stores the A and X registers. Next the data byte is read
from the UART and stored at address TEMP. The microprocessor then fetches
the status register (STATUS; figure 3-6) and sets the leading bit high,
signifying that a new byte has been written into TEMP. Now RDAV is set
low, then high by storing a zero and then a one in bit PAO of PIA port B.
The UART is now ready to signal the microprocessor with an NMI as soon as a
new byte has arrived. The microprocessor then restores the A and X
registers and returns to the main program.

b. MAIN Program. When the microprocessor recognizes a RESET or
an IRQ, it begins to initialize the range ring display routine (see figure
3-8). Since the microprocessor displays video data by retrieving beam

-29-

*19)5169y SNLVYLS 9-€ 24nbBlg

Boj4
4507

Boi4
sNo 1Al

—

uosuodx3 Hom 3|qP|1DAY

3|qo|IPAY
indu|

=30~

NMI Acknowledged

N2

Save A and X
registers

Get
UART

Data

v

Store data in
TEMP
or TEMP +1

L

Set Data Available
Flag and Reset
RDAV

Restore
A and X
Registers

L
e)

Figure 3~7. Receiver NMI Service
Routine.

Reset, IRQ

V.

Init Range
Ring Display

Set
/0

Ports

Yes

Clear
Display

k;

Init registers
Pointers
Flags

¥

SYNC ond
SAVE Subroutine

DISPLAY
Subroutine

Figure 3-8. Receiver Software MAIN Loop.

-31-

JSR SYNC

!

Get
STATUS Register

recirculating memory

Clear
COUNT

)

Adjust
write pointer

if necessary

v

Exit
subroutine

<

Figure 3-9.

Data Initialize UART Exit
Available? Set START ; (Subroutine)
Adjust
STATUS Register
Two
Bytes Transfer TEMP Exit)
Collected? to TEMP +1 Subroutine
Two
Matched Transfer TEMP Decrement
Bytes? to TEMP +1 COUNT
Exit
Store data in Subroutine

SYNC (and SAVE) Subroutine.

-32~

J3R Display

Get data
from memory

)

Mask
unnecessary bits

(Position No Horz or Vert
CRT Beam) =3FH
Write to
AD 588 DACPORTS
(D/A) Ves
Unblank Y
th:r?k JSR CLEAR
\t Load 3FH in
Adjust read all locations
pointer 3FH = Blank of
Recirculating
Memory

Interrogate
keyboard ﬁi%
C subroutine)

Exit)
subroutine

Jump to
subroutine CLEAR

Exit
(subroutine

Figure 3-10. DISPLAY Subroutine. Figure 3-11. GLEAR Subroutine.

-33-

p—

positional data from memory and using that data to place a dot on the CRT,

the range rings are created by reading data provided in ROM and placing the
data in the display queue.

Next, all of the I/0 ports are programmed for proper direction and
polarity (i.e., the blanking port is set as an output and is high) and a
check 1s performed to determine 1if this is the first iteration. If it is
the first iteration, all of the data in the display queue, with the excep—
tion of the range rings, is cleared. This way, the display will not show
data until it is received from the transmitter. Finally, before entering
the main loop, all of the registers, pointers, and conditional flags are
cleared.

The main loop consists of jumping to two main subroutines, the SYNC
and SAVE subroutine (hereafter called the SYNC subroutine) and the DISPLAY
subroutine (see figures 3-9 and 3-10, respectively). The SYNC routine gets
the STATUS register and checks bit 7. If it is low, then no new data is
avallable. The START flag is checked to see if this is the first iteration
of the SYNC routine. If so, the UART is set to receive and the START flag
is set high so that this portion of the software 1is not entered again. The
UART only needs to be reset once and operates asynchronously afterwards.
The subroutine 1s then exited. If bit 7 is high, then new data is ready
for processing, and the subroutine is continued. First the STATUS register
is changed so that bit 7 is low, and the previous sync bit (bit 7 of the
received data) is moved from bit O (of the STATUS register) to bit l. The
sync bit of the current data is obtained and stored in bit O of the STATUS
register. The memory location COUNT is also incremented during this pro-
cessS.

The COUNT register is then interrogated, and if it 1s equal to zero
or one, the new data received is stored in TEMP+l and the subroutine is
exiteds If it 18 equal to two, then two bytes of data have been collected
and the sync bits (bit 7) are compared. If they are not equal, the new
data is transferred from TEMP to TEMP+l, COUNT is decremented, and the
subroutine is exited. If the two sync bits are equal, the two matched data
bytes are stored in the recirculating data display queue (indexed by the
WRTI pointer), COUNT is cleared, and WRTI is incremented and then set to 25
if the Incremented value 1s equal to 153, This way, the data bytes for the
range rings are saved in locations 0-24, and 128 locations 26-152 are
available for Stormscope data (128 vertical data bytes and 128 horizontal
data bytes). Once adjusted properly, WRTI is stored and the SYNC
subroutine is exited.

The main routine then turns software control over to the DISPLAY
subroutine, which displays the dots placed into the recirculating display
memory by the SYNC subroutine. The DISPLAY routine first fetches the READI
index pointer and stores it into the X register. Then the horizontal and
vertical data bytes are index retrieved from the recirculating memory,
masked, and written to the appropriate D/A convertor. The Z axis of the
oscilloscope (blanking) is then pulsed to turn the beam on, off again, and
the READI pointer is incremented and saved.

-34-

The subroutine then checks to see if the 'C' key has been pressed on
the KIM keyboard. If so, the control is given to the CLEAR subroutine (see
Figure 3-11), which writes a blank in all of the recirculating memory loca-
tions (3F hex constitutes a blank). 1If the 'C' is not pressed, or upon
reentering DISPLAY from CLEAR, program control is returned to the main
program loop. If, when the horizontal and vertical byte are read and found
to equal 63, the beam positioning and blanking portions of the DISPLAY
routine are skipped and all other checks and changes occur as described
above.

E. The RF Link

The RF 1link was completed by using two ordinary VHF aviation
transceivers, the Bendix RT-241A as the transmitter and a Terra TPX 720 as

the receiver.

On the transmitting side of the uplink, the FSK was obtained from the
computer communication pair of a ComData Model 302B2-12 modem. The binary
FSK was fed through a luf capacitor, for DC isolation, with a common
ground, to drive the microphone input of the Bendix transceiver. The
microphone input was keyed (grounded) continuously, so that the transmitter
and UART operated asynchronously. The transmitter was turned off at inter—
vals to remain in accordance with the duty cycle specifications of the
Bendix transceiver, The transmitting modem was drivenm by a carrier genera-
tor so it would perform in a stand-alone mode, thus eliminating the need
for a two—way link between the transmitting and receiving modems.

The receiving end of the uplink accessed the RF modulated data
directly from the headphone output of the Terra transceiver. The audio
data was fed through a luf capacitor, again for DC isolation, with a common
ground and directly into the FSK input of a ComData Series 300 receive
modem (this modem 1is usually interfaced with a computer to communicate with
the user's terminal modems, such as the ComData 302B2-12), thus completing
the RF link.

F. Conclusions and Recommendations

The sferics uplink was constructed and tested in the laboratory as
defined by the design specifications. No in~flight tests were made and
none are planned for the near future. However, new applications are being
sought, one possibility being a ground-to—air data link now used in an MLS
evaluation system. These applications will be flown, using the techniques
described in this paper.

The playback capabilities were easily obtalned by feeding "Byte
Bucket” digital cassette recorder inputs with the standard RS-232C level
data from the transmitting modem. The playback gave a high-speed replay of
the sferics activity and truly displayed the storm tracking capabilities of
the WX-7A Stormscope. Minor changes in software would allow for playback
at normal speed.

~35-

Changes to the system for this particular application should include:

1. The range ring display should be removed from the video, and
replaced by a glassine overlay. The dots currently used to show the range
rings tend to confuse the observer.

2. The entire system should be repackaged for field experiments.
This should include a printed circuit board and better electromagnetic
shielding. This would eliminate the beam positioning problems that were
experienced due to the high frequency noise on the outputs of the D/A con—
vertors (small crosses were seen instead of dots).

-36-

Iv.

(11

(2]

[3]

[4]
[5]
[61]

(7]

[8]
(9]

BIBLIOGRAPHY

QRGB-256 LSI~11l Plug-In Singleboard Color Imaging System, Matrox
Electronic Systems, Ltd.

QFG-01 LSI~-1l Frame Grabber Manual #154M0-03-0, Matrox Electromic
Systems, Ltd.

AIM-65 Microcomputer Users Guide, Rockwell International, Revision 2,
March 1979 .

FORTH Ugers Manual, Rockwell International, June 1981,
AIM-65 Floating Point Software Package, Rockwell International.

Standard Mathematical Tables, CRC Press, Inc., Twenty-second edition,
1974, p. 374.

Ryan, P., et al., "United States Patent No. 4,023,408 - Stormscope,”
Dytronics Company Inc., Columbus, Ohio, June 10, 1976,

MOS/LSI Data Book, National Semiconductor Corp., 1977.

Apple II Reference Manual, Apple Computers, Inc., 1979.

-37-

v. ACKNOWLEDGEMENTS

This research was sponsored by NASA Langley Research Center, Hampton,
Virginia, under Grant NAG-1-124, in conjunction with NASA's Single Pilot IFR
Research Program. The authors would like to express their appreciation
to Dr. Robert W. Lilley, Associate Director of AEC, for his helpful
suggestions and advice, and to AEC student interns Messrs. Douglas Dietz

and David Hartwig for constructing the sferics uplink circuit designs
in a most expeditious and accurate manner,

-38-

VI.

APPENDICES

A.

B.

c.

G.

FORTH Software Description for CWRDD.

Custom Interface Description.

Transmitter Schematic.
Receiver Schematic.
Component Board Layout.
Software.,

l. Transmit

2. Recelve

Photographs.

-39-

A. FORTH Software Description For CWRDD

The CWRDD software adds 14 new words to the FORTH vocabulary that
perform certain functions. The topmost word which is the one used to exe-
cute the entire program is ROTATE. The following 1s a description of the
functions of each of the 14 new FORTH words. The words are described from
most primitive to least primitive, e.g., each succeeding word requires the
previous word. A listing of the FORTH source code follows the word
description.

INIT
This word will perform initialization of the custom interface to the
Matrox video display and frame grabber boards.

PIXADR

This word will, based on the contents of variables XADDR and YADDR,
store these variable contents into the X address and Y address buffers of
the Matrox display board. This must be done before writing or reading a
pixel value from the display.

CDWRT

This word will take the contents of variable DATA and store it into
the pixel on the matrox display board addressed by the previously stored X
and Y addresses written using the PIXADR word. Additionally, the wvariable
CNTRL is written into the control word of the Matrox display board.

CDREAD

This word is identical to CDWRT, except the pixel addressed is read
instead of written. The contents of the Matrox control word is also read
and placed in variable CNTRL.

SCREG

This word will write the contents of SCROLL to the scroll register of
the Matrox display board. This is normally set to 0 for the CWRDD soft-
ware.

MULT
This word will take two 32-bit values from the stack and multiply
them together, leaving the result on the stack.

DIV

This word will take a 32-bit value from the stack and divide it by
1024 and return a 16-bit value to the stacke This is done to unscale the
value scaled using the trigonometric functions. All trig functions are
multiplied by 1024 since fixed point math is used in this software.

ADD
This word will add two 32-bit values from the stack and return a
32-bit value to the stack.

SUB
This word will change the sign of the top 32~bit value on the stack.

-40-

Typically, this is used in conjunction with the ADD word to perform
subtraction of two values on the stack.

STICK

This word will read the joystick on both axes and return a value pro-
portional to the left/right joystick position in a variable called HDG and
a value proportional to the fore/aft joystick position in a variable called
SPD.

INPUTH

This word will take a value from variable DEGRE, which is the heading
angle, and convert it to floating point format and place it in the AIM-65
floating point software's floating point register.

WRITEP

This word performs the translation and rotation of the course-up
display by implementing the calculations described in the software descrip-
tion of Section III of this report. These calculations are performed on
the 52 x 52 pixel array.

NEXTPIX

This word determines what the next alrcraft position is in the Matrox
weather display field based on the variables input from the joystick. This
word also writes the heading angle, speed, and x and y coordinates of the
aircraft position.

ROTATE

This word is the main program word. Evoking this word will run the
program for the CWRDD. This word includes all software value initializa-
tion and control of the selection of sync input to the frame grabber.
Additionally, the sine and cosine values of alrcraft heading are computed
and scaled by 1024, and saved as constants for the WRITEP and NEXTPIX
words. ROTATE executes forever or until the reset on the AIM-65 is
pressed.

This software is the code necessary to produce the CWRDD using the
AIM~65, Matrox Video Display, Frame Grabber, and a video tape recorder
with recorded weather radar information. This software can be executed
from the AIM-65 FORTH environment by issuing the word ROTATE.

DECIMAL

52 CONSTANT FRAME (SQUARE FRAME SIZE

26 CONSTANT HALFF (HALF FRAME SIZE

128 VARIABLE X (AIRCRAFT X COORDINATE

128 VARIABLE Y (AIRCRAFT Y COORDINATE
VARIABLE SINANG

VARIABLE COSANG

VARIABLE YI (AIRCRAFT X COORD. IN WX PLANE
VARIABLE XI (AIRCRAFT Y COORD. IN WX PLANE
VARIABLE DEGRE

VARIABLE SPEED

OO0

~41-

(WORD INPUTH LOADS HEADING IN FLOATING PT ACCUM.

: INPUTH
DEGRE @ SDF ;

(WORD WRITEP WRITES THE COURSE UP DISPLAY

: WRITEP
FRAME O
DO I 46 - YI !
FRAME O
DO I HALFF - XI !
XI @ COSANG @ MULT
YI @ SINANG @ MULT
SUB ADD DIV
X @ + XADDR C!
XI @ SINANG @ MULT
YI @ COSANG @ MULT
ADD DIV
Y @ + YADDR C!
PIXADR
CDREAD
219 XI @ + XADDR C!
199 YI @ + YADDR C!
PIXADR
02 CNTRL C!
CDWRT
LOOP
LOOP ;

(WORD NEXTPIX DETERMINES THE NEXT AC POSITION IN
(WX DISPLAY PLANE
¢ NEXTPIX
STICK HDG @ DUP 1 -
0< IF
DROP 1
THEN
DUP 169 -
0< NOT IF
DROP 169
THEN
1 - 359 168 */ 180 + DUP 360 ~-
0< NOT IF 360 - THEN DEGRE !
SPD @ DUP 1 -
0< IF
DROP 1
THEN
DUP 147 -
0< NOT IF
DROP 147

-42-

THEN
1 - 10 * 146 / SPEED !
SPEED @ COSANG @ MULT DIV Y @ SWAP - Y 1
SPEED @ SINANG @ MULT DIV X @ + X !
CR DEGRE @ , SPEED @ , X @ , Y @,

(WORD ROTATE THIS WORD WILL PERFORM THE COURSE UP
(WEATHER DISPLAY DEMONSTRATOR

: ROTATE

128 X ' 128 Y | O DEGRE ! O SPEED !
INIT

0 SCROLL C!

SCREG

BEGIN

BEGIN

CDREAD
CNTRL C@ 64 AND

0= UNTIL

66 CNTRL C!
CDWRT

6 0 DO

INPUTH

RADIANS PAD F>M SIN 1024 S>A F* F>S SINANG !
PAD M>F COS 1024 S>A F* F>S COSANG !
WRITEP

NEXTPIX

LOOP

AGAIN ;

HEX

0 VARIABLE HDG
0 VARIABLE SPD

(WORD STICK RETURNS VALUE FOR HEADING IN HDG
(RETURNS VALUE FOR SPEED IN SPD

CODE STICK

0 # LDY,
20 # LDA,
A002 STA,
A000 STA,
BEGIN,
A000 LDA,
CO # AND,
0= UNTIL,
00 # LDA,
AO00 STA,
20 # LDA,

~43-

AO00 STA,
BEGIN,
A000 LDA,
NOP,
0< IF,
INY,
0= IF,
FF # LDY,
THEN,
THEN,
NOP,
A000 LDA,
0< NOT UNTIL,
HDG STY,
BEGIN,
A000 1DA,
CO # AND,
0= UNTIL,
0 # LDY,
00 # LDA,
A000 STA,
20 # LDA,
A000 STA,
BEGIN,
A000 LDA,
A ASL,
0< 1IF,
INY,
0= IF,
FF # LDY,
THEN,
THEN,
A000 LDA,
A ASL,
0< NOT UNTIL,
SPD STY,
NEXT JMP,
END-CODE

(VARIABLES FOR MULT AND DIV WORDS

0 VARIABLE PROD
2 ALLOT
0 VARIABLE MC

2 ALLOT
0 VARIABLE MPLR
0 VARIABLE SI
HEX

(WORD MULT TAKES TWO 16 BIT WORDS AND MULTIPLIES
(THEM WITH A 32 BIT RESULT PUT ON STACK

-44-

CODE MULT
0 # LDA,
PROD STA,
PROD 1+ STA,
PROD 2+ STA,
PROD 3 + STA,
MC 2+ STA,
SI STA,
TOP 1+ LDA,
PHA,
80 # AND,
o<
1F,
PLA,
FF # EOR,
MC 1+ STA,
TOP LDA,
FF # EOR,
CLC,
01 # ADC,
MC STA,
00 # LDA,
MC 1+ ADC,
MC 1+ STA,
80 # LDA,
S1 EOR,
ST STA,
ELSE,
PLA,
MC 1+ STA,
TOP LDA,
MC STA,
THEN,
SEC 1+ LDA,
PHA,
80 # AND,
0<
IF,
PLA,
FF # EOR,
MPLR 1+ STA,
SEC LDA,
FF # EOR,
CLC,
0Ol # ADC,
MPLR STA,
00 # LDA,
MPLR 1+ ADC,
MPLR 1+ STA,
80 # LDA,
SI EOR,

-45-

08

SI STA,
ELSE,
PLA,
MPLR 1+ STA,
SEC LDA,
MPLR STA,
THEN,
LDY,

BEGIN,

PROD ASL,

PROD 1+ ROL,

PROD 2+ ROL,

PROD 3 + ROL,

MPLR ASL,

cs

1F,

CcLC,
MC LDA,
PROD ADC,
PROD STA,
MC 1+ LDA,
PROD 1+ ADC,
PROD 1+ STA,
MC 2+ LDA,
PROD 2+ ADC,
PROD 2+ STA,

0 # LDA,

PROD 3 + ADC,

PROD 3 + STA,

THEN,
DEY,
Q=

UNTIL,

SI
0<

LDA,

1F,
CLC,
FF # LDA,
PROD EOR,
01 # ADC,
TOP STA,
FF # LDA,
PROD 1+ FOR,
0 # ADC,
TOP 1+ STA,
FF # LDA,
PROD 2+ EOR,
0 # ADC,
SEC STA,
FF # LDA,
PROD 3 + EOR,

46

0 # ADC,
SEC 1+ STA,
ELSE,

PROD LDA,
TOP STA,
PROD 1+ LDA,
TOP 1+ STA,
PROD 2+ LDA,
SEC STA,
PROD 3 + LDA,
SEC 1+ STA,
THEN,
NEXT JMP,
END-CODE

(CODE WORD DIV TAKES 32 BIT VALUE FROM STACK AND
(DIVIDES BY 1024 RETURNS 16 BIT VALUE TO STACK

CODE DIV
02 # LDY,
BEGIN,
TOP 3 + LSR,
TOP 2+ ROR,
TOP 1+ ROR,
TOP ROR,
DEY,
Q=
UNTIL,
TOP 2+ LDA,
TOP 3 + STA,
TOP 1+ LDA,
TOP 2+ STA,
POP JMP,
END-CODE

(WORD SUB COMPLEMENT 32 BIT DATA ON STACK
HEX

CODE SUB
CLC,
FF # LDA,
TOP EOR, (GET LEAST SIG BYTE AND COMPLEMENT
01 # ADC, (OBTAIN TWOS COMPLEMENT
TOP STA, (SAVE IT
FF # LDA,
TOP 1+ EOR, (DO THE SAME T0 THE NEXT BYTE
00 # ApC,
TOP 1+ STA,
FF # LDA,

-47-

TOP 2+ EOR, (AGAIN, TO THE NEXT BYTE
00 # ADC,
TOP 2+ STA,
FF # LDA,
TOP 3 + EOR, (AND AGAIN TO THE LAST BYTE
00 # ADC,
TOP 3 + STA,
NEXT JMP,
END~CODE

(CODE ADD ADD TOP TWO 32 BIT VALUES ON STACK
(RETURN 32 BIT WORD TO STACK

HEX

ASSEMBLER

CODE ADD
CLC,

TOP LDA,

TOP 4 + ADC,
TOP 4 + STA,
TOP 1+ LDA,
TOP 5 + ADC,
TOP 5 + STA,
TOP 2+ LDA,
TOP 6 + ADC,
TOP 6 + STA,
TOP 3 + LDA,
TOP 7 + ADC,
TOP 7 + STA,
POPTWO JMP,
END-CODE

(THIS IS THE CONSTANT AND VARIABLE LOCATIONS

HEX

8000 CONSTANT LOUT
8001 CONSTANT HOUT
8002 CONSTANT LIN

8003 CONSTANT HIN

AOOF CONSTANT PIAA
AOO3 CONSTANT PIAD
AOOB CONSTANT ACR

0 VARIABLE DATA

-1 ALLOT

FF VARIABLE CNTRL

-1 ALLOT

FF VARIABLE XADDR

-1 ALLOT

FF VARIABLE YADDR

-1 ALLOT

FF VARIABLE SCROLL
-1 ALLOT

-48-

(THIS IS THE CUSTOM INTERFACE INIT CODE

CODE INIT
7F # LDA,
PIAD STA,
0 # LDA,
ACR STA,
0 # LDA,
PIAA STA,
NEXT JMP,
END-CODE

(THIS IS THE STORE PIXEL ADDRESS CODE

CODE PIXADR
FD # LDA,
LOUT STA,
OF # LDA,
HOUT STA,
08 # LDA,
PIAA STA,
09 # LDA,
PIAA STA,
01 # LDA,
PIAA STA,
FF # LDA,
XADDR EOR,
LOUT STA,
FF # LDA,
YADDR EOR,
HOUT STA,
5 # LDA,
PIAA STA,
BEGIN,
PIAA LDA,
0< UNTIL,
01 # LDA,
PIAA STA,
0 # LDA,
PIAA STA,
NEXT JMP,
END-CODE

(THIS IS THE CONTROL AND DATA WORD WRITE CODE

CODE CDWRT
OF # LDA,
HOUT STA,
FF # LDA,
LOUT STA,
08 # LDA,

-49-

PIAA STA,
09 # LDA,
PIAA STA,
01 # LDA,
PIAA STA,
FF # LDA,
CNTRL EOR,
HOUT STA,
FF # LDA,
DATA EOR,
LOUT STA,
05 # LDA,
PIAA STA,
BEGIN,
PIAA LDA,
0< UNTIL,
01 # LDA,
PIAA STA,
0 # LDA,
PIAA STA,
NEXT JMP,
END-CODE

(THIS IS THE CONTROL AND DATA WORD READ CODE

CODE CDREAD
OF # LDA,
HOUT STA,
FF # LDA,
LOUT STA,
08 # 1LDA,
PIAA STA,
09 # LDA,
PIAA STA,
03 # LDA,
PIAA STA,
BEGIN,
PIAA LDA,
0< UNTIL,
FF # LDA,
LIN EOR,
DATA STA,
FF # LDA,
HIN EOR,
CNTRL STA,
1 # DA,
PIAA STA,
0 # LDA,
PIAA STA,
NEXT JMP,
END—-CODE

-50-

(THIS IS THE WRITE TO SCROLL REGISTER CODE

CODE SCREG
FB # LDA,
LOUT STA,
OF # LDA,
HOUT STA,
08 # LDA,

PIAA STA,
09 # LDA,

PIAA STA,
01 # LDA,
PIAA STA,
FF # LDA,
SCROLL FOR,
LOUT STA,
05 # LDA,
PIAA STA,
BEGIN,
PIAA LDA,
0< UNTIL,
01 # LDA,
PIAA STA,
0 # LDA,
PIAA STA,
NEXT JMP,
END—CODE
FINIS

-51-

B. Custom Interface Description.

1. Q-BUSS to AIM-65 Interface

Figure B-1 is the Q—-BUSS to AIM-65 interface schematic. This circuit
will interface the 16-bit bidirectional address and data buss of the Matrox
boards to the separate 16-bit address and 8-bit bidirectional data buss of
the AIM-65's 6502 microprocessor.

All of the data in and out of the AIM-65 is transferred through Ul
which is an 8-bit bidirectional buss driver. All addresses and data on the
Q—-BUSS are complemented data; therefore, any data or addresses output from
the AIM-65 must be complemented before transfer. For output of address or
data from the AIM-65 to the Matrox Q—-BUSS, device Ul is set up to input on
the left and output on the right, The address or data from the AIM-65 is
placed with high order 8 bits transferred to U4 and low order 8 bits trans-
ferred to US. If the data contained in U$ and U5 is an address for the
Q—-BUSS, then the sync control line from the AIM-65 is asserted. If the
data in U4 and U5 is data then DOUT is asserted, which enables the outputs
(right side) of U4 and U5. The actual clocking of the data from the 8-bit
AIM-65 data busses into U4 and U5 is a memory reference operation. Address
$8000 is U5 and $8001 is U4, The Buss drivers U2 and U3 have all inputs
and outputs floating during the address output operations from the AIM-65
to Q-BUSS because the CE bar inputs to U2 and U3 are disabled.

The process of reading data to the AIM-65 from the Q-BUSS also
involves memory-mapped operations. The high 8 bits are read from U2 at
$8003, and the low 8 bits are read from U3 at $8002. The read process
involves asserting DIN, which causes U2 and U3 to have inputs on the right
and outputs on the left. This makes the data on the 16-bit Q-BUSS
available to U2 and U3 which transfer this data to the AIM-65 when reads to
8003 and $8002 are performed respectively. The outputs of U4 and U5 do not
present a problem, as they are floated by keeping the output enables high.

This interface is relatively simple and relies on software for opera-
tion., Significant speed improvement could be realized if an all-hardware
approach were used, but for the CWRDD the current implementation has per-
formed successfully.

2. Composite Sync Generator

Figure B-2 is the schematic for the composite sync generator used to
provide solid sync for viewing the weather radar displays. The circuit is
implemented very easily by the use of a National Semiconductor Corp. MM5321
TV Camera Sync Generator chip [8]. Essentially, all that is needed is a
source of 1.26 MHz and some TTL buffers. Devices U8 and U9 provide a buf-
fered 12.60 MHz reference oscillator and a divide by 10 counter to produce
1.26 MHz at the output of Ull-12, This drives the clock input to the
MM5321 (Ul2) and with the proper condition strapping, as shown, a MOS level
composite sync signal is produced at Ul2-16. This output is buffered and
provided to a BNC connector on the custom interface board. Also provided
is a buffered vertical driver output which can be used to externally sync

-52-

"G9-WIV 04 SNG-O ‘eopyidqu] woysn) * |-g 31nb1y

Z
[a)
@

-r<}:"l\.. L
)zl
3
3 @ |
o , o

0B,
A N BT L
t v R -
l/ : ,,.tldlj \w
N N N_” T N
—J = TN oY _
Ovag . 4a P
Illl./ givq 1008, .Iow
N JIN (] n] o ¥or
_ N dJm \ §+ 8| 9] on geis
Y (M 8 N ot 0z] sn 22857
~ 7] ST e o] 0| m 2557 m_x
I// 1] m PN oL oz| en Yo |
1 I
™ 3 B ol ozl an Svzs1
. e v r— °la oo | oz srzst
< N\ / olvag,___4td 2008, AND | As+ |"Bisag| *aaq
IW (q i INF 6 *ou uid
[4 TN uissng Jomog
m {d.—l N *uuoD) UoISUSAX] » Ef
2 NS srzst 5N *wuo3 uoyooljddy » {f
& ¥l o Y ®20pa1u] GO-WIV
) 7~
N — J
Ovag m.\w 1 mB) _u <gl] ,A.d.ﬁu s
glva 2%0 €008 U_ M
Q T N <0 od
Zi TN w" <)
(q_ [V N 31 <0 za b er
TN 1 <) ea
N T <M ol
1 M 7\ T sa
7.«1/ CH <8 9a
c L8 e 4 ~<Da
tvas T

1NO IAI¥A L¥3IA T&A
ol

R ‘

LNO DNAS IA
ILISOdWOD 4

LN
el

* JOybIoUAS) SUAG 9)1s0dwon) 9IDyIBUl woysn) *Z-g aunbiy

emn

X 21yl eLn yovs
1 X] 8ELIN 126G WW
XiZ1rl LLN ¥O¥Z
Xlol| s 6N 06vL
X14ivl 8N 00vL
L@

N w.

*SON NId

6N
oL1Z[(9[€|¢

06vL

_m it

AG+

ot (11 ONISSNE ¥IMOd
LZESWW
8 |¢l _m_o_m_v_a
rAlQ
AG+ AZ|~ .
ZHW09" Z1L zwh%mm&
_ _)

the VIR if necessary. The composite sync generator produces excellent sta-
bility, and video presented with this sync generator is very sharp in
detail.

3. Joystick Hardware

The joystick schematic is presented in figure B-3. Each timer is set
up in the triggered one shot mode such that a pulse on the trigger input
will produce a pulse whose time duration is proportional to the position of
the joystick pot for that axis. The FORTH assembly context software incre-
ments a counter until the pulse ends, and then the count that is accumulated
is proportional to the joystick position. A common trigger is used because
only one axis is measured at a time. The idea for this circuit is adapted
from the similar implementation used in the APPLE II computer game paddle
input [9]. Figure B-4 is the parts placement for the circuits included on
the custom interface board.

-55-

=30 LysAO[90DJIB U] wWoysN)) *g-gq By

>m+

9dd NNOD NOILVYDI1ddVY 69 - WIV cdd /49d
Ir
/1 v | 91 61
_|t_t 106611
3d 095
I *
AGHEP—NNN—@—— t_K 4d 09¢
I N = 3
-\ 1
6 9 M1
ol Dpwl G
_ jeng
10 Ll 9cC 14 —_o.
| NiTHﬂ 3 _U
FAVAVAS
< _N M1 el [4 _ N_o.
d
paads AN v_ooN—Nv —> AGhH
g NI|
b
t_Ml.w — ulppay
AL Fzy

us u9
7400 7490
u10 ull u12 u13
=0 Vi
_ﬂ__ 7404 5321 7404
ul w2 u3
L5245 L5245 L5245
us U5 ué
L5374 L5374 L5238
u7
7404

VDRIVE

External
Connections
to AIM

and

Matrox
Boards

Figure B~4, Custom Interface Parts Layout.

-57-

CSYNC

Appendix C. Transmitter Schemadtic.

1N ELoi-5-AV

U Lqu gsi du ®

oT
3 z-3
] M-3
yij WOY 7 FV
11 9
91t9
5 it = v
74 ¥ a-v
¢ o>-v
€ z
74 T
T
EH £8g 1 Zl
Wiy |_¥8a Y] en i Z4a
[T14] <1 (1] 194
| w9 "%aq 9L] wod [4 oq
smuppy — AQ al ... |8 0av
win-{ sav 174 L 1av
8av v
As+o e S £av
14 ¥av
3 .m.v« 3 cav
el 0 z Ay
0 1 v

Jossadoud
~GIofW
WD

wappy

rvd

Tvd
Ivd
ovd

68d
¥ad
9d
Zud
led
0ad

N

» x g1 ,_um_
aya|d
A | (4] lsuabmmbmv Proq 0021
: :H_ —N_n = B
AS+ A
AZL-
l T
~ =
H <<
HE Am pEild
NA_ _ <] o 008
4 €1 o
\/n _.l._lAa 8] M
v st i Lo oH
y
5V z €l] AII_IAM_
= ol ¢ ot it A
LU A_T.._‘Aw.s
v Z .m_ 9 § A
v sl v ¥ _23« "@ v..assm
ri-v 7N v T 1 A 108N
LN " NTJ.@ A
91V sty ¥ [[od's
£ | ATI_.AN_?
gl-v 4§ 1 |€t 1 |w|||n.
v o] $ [0 {
T Zl vy |9 i Q _
oL-v] ¢, |
ns A— —
i H—<JH
.TA.]ITA&_ e J3 AOW puoog
T N om | 008
| A S 41

=58-

Appendix D. Receiver Schematic.

Ksav

Z
y
$

o
v
€™ 0¥0P . o 2 e
i ™ —elom
- v wol
< 1 g g
A | =
o ogop wpy snq s9uppo Wiy
93 IWN
&V | %8
BJop w
aﬂ«g »nq D4op Wiy
thibils 8 10d,
Si]¢ OIDP POAIIRY punosB indjno
w et WIOOW p—————0 suoydpoay
du so 2x puB 86A 29A Pl 19PeH
. \Z[c «T N
I_H N+

=59~

Appendix E, Component Board Layout.
5
cs EZ
.‘@QOQQ b 7404 LDS 1489 % .
X ui3 u12
2 574Lso4 U9
3) _on 5
= (741502 2716 &
23 £
b AD558 | o ADS88 | |
- U6 u7 3
£3 :
AY=-5-1013 &;
b od o)}
6 8 U5 2
3 Q
20 Oz b 741500 | § 74504
5 g @ U3 0%
~N
~CR] 4040 4029
EJrnmIﬂ\cal E N Uzr
Receiver Component Layout
Stormscope
Umbilic%l F74]74 L 6116
@ U9
2| |38 Discrete un :
2l |} Camegoent e
VERUY. 74174 g
M~ ui1o us w
€
o
8 5
[Q
23 1740502 | 374104 |} 741500 g
g5 u7 Ué U5 S
£
< b 4040 | § 4029 | Frarsaza 3
| U4 us U2
E o
EZMNEZ o/ M\e oog
gngg OOO N } AY-5-1013
w Z3— adDD 7]

Transmitter Component Layout

=560~

Appendix F,

Software,

=61~

1, Transmit,
doe Je e e A e e de Fe e 36 e A e A ek ke e ke ok e e ek e Aok e e e o e ok e o ok ok ke e vk ok S kAo ke k ok
*

* ADDRESS DEFINITIONS AND RESERVED MEMORY
*

khkkhkkhkhkhkihkhhhkhkhkhhhhkhhhkhkhhkkhkhhhhhkkhihhkhhkkhhhhhkhkhkhkhhhkhhkikhhkkhikXxhhkhkhkhxkkk
*

*

ORG $0000
PIAA EQU $1700 PIAA DATA PORT ADDRESS
DDRA EQU $1701 PIAA DATA DIRECTION REGISTER
PIAB EQU $1702 PIAB DATA PORT ADDRESS
DDRB EQU $1703 PIAB DATA DIRECTION REGISTER
UDAT EQU $0800 UART DATA TO BE TRANSMITTED ADDRESS
STROBE EQU $0801 ADDRESS TO BE ACCESSED TO SEND DATA VIA UART
DAVPNT BSS 1 DATA AVAILABLE TO SEND INDEX POINTER
UPNT BSS 1 UART DATA INDEX POINTER

DATFLG BSS 1 DATA FLAG TO DETERMINE SENSE OF 8TH BIT OF DATA
* .

*

khkkhdhkhkkhkkhhhkhhhkhkhkhhkhkkkhkhkkhkkhkhhkhkhkhkkkhhhkhkdhihdhkhhhdhkddikkkikkkikikkiikkk
*

* HORIZONTAL AND VERTICAL DATA MEMORY
*

kkAhkhkkhkhkkhkkhkdhkkhkhkkhkkhkhkhhkkhhkhkhkhkkhkhkhkhkkhkhkkhhkhkkkhkkhkkhhhkhkhhkkhkhkkhkhkk
*
*

ORG $0200
HORZ BSS 256

VERT BSS 256
*

*
Fe ok e e e e A K K o e e e e ke de e Ko e e e K de e e e gk e e e e ok s e e e e e e o d Jo e e e o e o e e de e e ke e K e de e e de de ke ok ek K
*

* MAIN PROGRAM
*

dkkkkkikkhkkhkkkkhkhkhkikkhkkkhhkhhhhhhkhhhkkhhkhkhhhhikkhhikkhkkkkkhkkkkhkkikkk
*

*

ORG $0C00
*
* PROGRAM INITIALIZATION
*
REF LDA 0
STA DAVENT ZERO THE DATA AVAILABLE INDEX POINTER
STA UPNT ZERO THE UART DATA INDEX POINTER
STA DATFLG ZERO THE DATA FLAG
LDA =%00000000
STA DDRA PORT A ALL INPUTS
LDA =%00000000
STA DDRB PORT B ALL INPUTS
*
* LOOP UNTIL DATA IS AVAILABLE
*
LOOP1 LDA DAVPNT GET DATA AVAILABLE INDEX POINTER
CMP UPNT COMPARE IT WITH THE UART DATA INDEX POINTER

-62-

IF UPNT = DAVPNT, THEN ALL THE DATA AVAILABLE HAS BEEN SERVICED
AND TRANSMITTED.

IF UPNT < DAVPNT, THEN (DAVPNT-UPNT) SETS OF DATA STILL REQUIRE
ATTENTION.

* % X * X %

BEQ LOOP1 LOOP UNTIL DATA IS AVAILABLE
* WHEN DATA IS AVAILABLE, PROCESS AND SEND DATA
*
LOOP2 LDX UPNT GET UART DATA INDEX POINTER
LDA DATFLG GET THE DATA FLAG
*
* BECAUSE THE DATA MUST BE PAIRED, EVERY HORIZONTAL BYTE MATCHED
* WITH ITS RESPECTIVE VERTICAL BYTE, THE EIGHTH BIT OF BOTH BYTES
* OF EVERY OTHER PAIR ALTERNATE ('S AND 1'S.
*
* HORIZONTAL N = LXXXXXXX
* VERTICAL N = IXXXXXXX
*
* HORIZONTAL M+1 = OXXXXXXX
* VERTICAL N1 = OXXXXXXX
*
*
*
BEQ ZERO IF THE DATA FLAG 1S ZERO, 8TH BIT = 0, SO JUMP
*
* IF DATA FLAG IS A ONE, THEN 8TH BIT = 1, SO CONTINUE
*
*
* ROUTINE TO SET THE 8TH BIT = 1 AND SEND
*
%
LDA HORZ,X GET HORIZONTAL DATA
ORA =7%10000000 SET THE 8TH BIT
JSR SEND SEND IT !
LDA VERT,X GET VERTICAL DATA
ORA =%10000000 SET THE 8TH BIT
JSR SEND SEND IT !
DEC DATFLG CLEAR THE DATA FLAG AND USE ZEROS NEXT
JMP SENT JUMP OVER THE ZEROS ROUTINE
*
%
* ROUTINE TO CLEAR THE 8TH BIT AND SEND
*
*
ZERO LDA HORZ,X GET HORIZONTAL DATA
AND =701111111 CLEAR THE 8TH BIT
JSR SEND SEND IT !
LDA VERT,X GET VERTICAL DATA
AND =%01111111 CLEAR THE 8TH BIT
JSR SEND SEND IT !
INC DATFLG SET THE DATA FLAG AND USE ONES NEXT
SENT INC UPNT INCREMENT THE UART DATA POINTER TO GET NEW DATA
JMP LOOP1 LET'S DO IT AGAIN «..s.

-63-

AkAhARAAKAKRKKARKARRRAkAAkRkhkhFThkhhkkhhhhkhkhhihkkhhhhkihkdkhhkdhkhhkikkk

THIS SUBROUTINE WILL :

1) INTEROGATE THE UART TO SEE IF IT HAS COMPLETED TRANS-
MITTED THE PREVIOUS CHARACTER.

2) IF THE UART IS NOT BUSY, THE UART STORBE WILL BE ACCESSED
TO BEGIN THE TRANSMISSION OF A NEW CHARACTER.

3) 1IF THE UART IS BUSY, THE PROGRAM WILL LOOP UNTIL THE
UART SIGNIFIES THAT IT IS READY TO BEGIN TRANSMISSION
OF A NEW CHARACTER AND RETURN TO THE MAIN PROGRAM.

¥ % & ¥ N ¥ % N F % X X X

dkkkkhkkhkhkhkhhkhkhkhkhhkhkkhkhhkkkhkdhkkhkhkhhhkhkhkhhkhkhkhkkkhkhhkhkkhkhhkhkhhhhkhkkhkkhkhkkkkkkhk
*
*

SEND STA UDAT SEND DATA TO UART
LOOP3 LDA PIAA GET UART READY FLAG (PA6 OF PIAA)
AND =%01000000 IS IT A ZERO
BEQ LOOP3 IF S0 THE UART IS BUSY, LOOP BACK AND TRY AGAIN
STA STROBE STROBE THE UART TO TRANSMIT NEW DATA BYTE
*
LDY =105 SET DELAY APPROX 417 US
LOOP4 DEY DECREMENT TIME
BNE LOOP4 IF NOT ZERO LOOP
*
LOOP5 LDA PIAA GET END OF CHARACTER FLAG
AND =%01000000 MAKE SURE UART GETS BUSY
BNE LOOPS
RTS ALL, DONE, GO BACK TO MAIN PROGRAM

KdckkkikkhkkdkkhkkhhhhhhrhhkkRkrkrkkhdhhhhhhkkhkhkkhkkhrkkkkkikikkkk
THIS IS THE NMI SERVICE ROUTINE. UPON RECEIVING AN INTERUPT THIS
PROGRAM WILL:
1) SAVE THE A AND X REGISTERS
2) OBTAIN AN INDEX POINTER
3) READ TWO BYTES FROM THE PERIPHERAL (THE STORMSCOPE)

4) USE THE POINTER TO STORE THE TWO BYTES IN THEIR PROPER
MEMORY LOCATIONS.

5) INCREMENT THE POINTER FOR THE NEXT NMI
6) RESTORE THE A AND X REGISTERS

7 RETURN TO THE MAIN PROGRAM

¥ O ¥ N X ¥ K X N % N N N ¥ X X H X N ¥ X N N X

b4

Khkkkhkkhkhkhhkhhkhkkhkhkhkhkhhkhhikkhkhhhhhhkkhkkkihhhkkhhdkhhkrhkhrhkkhkhkhhkhhkhrhhthkkikik

*

*

NMI PHA
TXA
PHA
LDX
LDA
AND
STA
LDA
AND
STA
INC
PLA
TAX
PLA

RTI
*

DAVPNT
PIAA
=$3F
HORZ, X
PIAB
=$3F
VERT, X
DAVENT

SAVE THE A REGISTER
GET THE X INDEX REGISTER

SAVE IT

GET THE DATA AVAILABLE INDEX POINTER

GET THE HORIZONTAL DATA (PAO-PAS5)

MASK OFF UNNEEDED BITS

STORE DATA FOR UART

GET VERTICAL DATA (PBO-PBS)

MASK OFF UNNEEDED BITS

STORE DATA FOR UART

INCREMENT THE DATA AVAIL. POINTER FOR NEXT NMI
GET OLD X REGISTER VALUE

RESTORE X REGISTER

RESTORE A REGISTER

GO BACK TO THE MAIN PROGRAM

e e e e e e e de e o e e ok e e e e e e e ok e e e e e e ek e e o g e e e e e e e e ek do e o e e ke ek K ek ek e e e e e kek

*

*
*

SET VECTORS FOR ROM

e o o e do v 6 o e e v e ok e o e o vl e v e ok ok e v e e e e e e e e ek ok e ke e ok e ok o ok ok e o ke o e ok ok sk e ok ok ok vk e e ok ok ok ke ke ke ke ok

ORG REF+$07FA

NMIVEC ADR
RSTVEC ADR
IRQVEC ADR

END

NMI
REF
REF

~65-

2. Receive

e de e e e e e e ek ke o e e e ok ok e e ek e e de ok e e de e e ek ok e vk e Rk ok ook ke e e e e koo ek
THIS ASSEMBLY CODE WILL RECKIVE RS-232 WORDS FROM A MODEM AND

DISPLAY THEM ON AN X Y OSCILLOSCOPE AS DOTS IN A FIELD OF 64 X 64

TO MIMIC THE DISPLAY ON THE RYAN 3M STORMSCOPE. THE FORMAT OF

THE RECEIVED WORDS MUST ALTERNATE BETWEEN HORIZONTAL AND VERTICAL

IN THAT ORDER WITH EVERY PAIR HAVING THE D7 BIT EITHER SET OR RESET.

* ¥ * * X X

khkkhkhkhhhhkhkhkhhhkkhkhhhkhkhhkhhkhhhkhhkkhhkhhhhhhkhkhhkhkkhhkkhkkkhkhhhkhhohkhhhkhikhkkkkkkhkkhkkk
*
*
*

kkkkkkhhhkhkhkkkhkkhkkkhhkhkhkhhkhkhhkhkkhdhhkhhkhhihhkhkihihikhihkikikiikikikhkdikkkikkkikkik
*

* ADDRESS DEFINITIONS AND MEMORY ALLOCATION
*

hhkhkhkkhkXxhkhkkkhhhhkkhhhkhkkhkhkhkhkhhhhkhkhkhhhhkhhhhkkhhhhhkihhkhhkhkkhkhhikhhikhkikhkhhkhkkkk
*
*

ORG $0000
PIA EQU $1700
PIAD EQU $1701
PIBD EQU $1703
PAB EQU $1702
SPIAA EQU $1740
SPIAB EQU $1742
SPIAD EQU $1741
SPIBD EQU $1743

OUTH EQU $0800 HORIZ D/A

OUTV EQU $0801 VERT D/A

UART EQU $0800 UART INPUT PORT
STATUS BSS 1 SOFTWARE STATUS WORD
COUNT BSS 1 INPUT LOOP COUNT
TEMP BSS 2 TEMP STORAGE FOR INPUT
WRTI BSS 1 INDEX TO WRITE TABLE
READI BSS 1 INDEX TO READ TABLE
COLD BSS 1

START BSS 1

*

khkkhkkkhkhhkhkihhkkkhkhhkhhhhkhkhkhkkhkhkkhkhkkhkkhhkhhkhkohkkhhhkhkkhhkkhkkkhkhkkhkkkkhkkkkkkk
*

* READ AND WRITE BUFFER STORAGE AREAS
*

kkkkkkhkhkkkkhkhkhhkhkhkrhkhkihkhhhhhhhhhkkihkhkhkhkhhhkkhkhkhkhihihkkhkkkhkhkhkhkhkiekkthkk
*

ORG $0200
VERT BSS 256

HORIZ BSS 256
*

khkkkhhdhhkhhhhkhkhkhkhkhhhkhhkhkhdhkhhhkhhkhkhkkkkhhkdkhhhhkthkkhkhkhkhhkkihkhikkhhkkhkkkkkkk
*

* MAIN PROGRAM STARTS HERE
*

hkkdkkhhkhkhhkhhkhhkhkkhkkkikkhkhkkhkhkkkkhkhkkhkhkkkhkhkkkhkkkhkhikkhkhkkhkkkkkhhkkkkhrkkkkikkk
*

*

66

ORG $0C00
VEC LDX =$00
INIT LDA HORIZ2,X

STA HORIZ,X

LDA VERT2,X
STA VERT, X
TXA
CMP =24
BEQ REF
INX
JMP INIT
REF LDA =$01
STA PIAD
STA PIBD
LDA =01 BLANK DISPLAY
STA PIA
LDA =$AA
CMP COLD TEST IF COLD START
BEQ CONTL JUMP IF NOT COLD START
JSR CLEAR CLEAR THE DISPLAY
LDA =$AA
STA COLD SET WARM START FLAG
CONT1l LDA =0
STA STATUS CLEAR STATUS
STA TEMP CLEAR IN WORDS
STA TEMP+1
STA COUNT CLEAR INPUT INDEX
STA START CLEAR START FLAG
LDA =01
STA PAB
LDA =25 SET FIRST WRITE ADDR
STA WRTI SAVE INDEX
LDA =$FF
STA SPIBD SET ALL BITS OUT
LDA =00
STA SPIAD SET ALL BITS IN
OVER JSR SYNC DO THE SYNC AND SAVE
JSR DISPLA JUMP TO DISPLAY ROUTINE
JMP OVER DO IT AGAIN

*
*
e e o e o e e e e e e K e o e e o e o e e e e o e e e de e e e de e gk e e v e ok ok A ke ke e e e ok e e vk ok ok ok ok e o e Sk e ok ke e ok 9 ok ok ok % e
*

* THE SYNC AND SAVE ROUTINES ARE HERE
*

ek d e oo o e e o e e e e ook e e o gk ke g vk e e e de e e e e e o o s e e e o o ke ok e ek ok e ke ok ok ek o o ok ok ok ok ok ok e vk ok e o e ke
*

*

SYNC LDA STATUS GET STATUS
BPL END DATA AVIAL SET
ASL A MOVE LAST TO PREVIOUS
AND =02 MASK BITS
ORA STATUS MERGE TO STATUS
AND =$7F MASK BITS
STA STATUS RESET DATA AVIAL BIT

-67-

INC COUNT

LDA =$FF SET START FLAG
STA START
CLC
LDA TEMP GET SYNC BIT
ROL A
ROL A
AND =01 MASK ALL BUT LAST BLT
ORA STATUS SET LAST BIT
STA STATUS SAVE TO STATUS
LDA =02 COUNT=2 ?
CMP COUNT IF YES CONTINUE
BNE END3 TRY AGAIN
LDA STATUS GET STATUS
AND =03 MASK FLAG BITS
BEQ SAVE IF BOTH =0 SAVE WORDS
EOR =§03
BEQ SAVE IF BOTH =1 SAVE WORDS
LDA TEMP GET LAST WORD
STA TEMP+1 SAVE TO PREVIOUS
DEC COUNT SET COUNT DO AGAIN
JMP END
END3 LDA TEMP GET FIRST WORD
STA TEMP+1 PUT TO LAST WORD
END LDA START
BNE END2 IF NOT O TICKLE UART
LDA UART
LDA =00
STA PAB
LDA =01
STA PAB
END2 RTS
SAVE LDX WRTL GET WRITE INDEX
LDA TEMP+1 GET HORIZ VALUE
STA HORIZ,X SAVE IN TABLE
LDA TEMP GET VERT VALUE
STA VERT, X SAVE IN TABLE
LDA =0
STA COUNT
INX BUMP INDEX
CPX =153 TEST IF 128TH ADDR.
BNE CONT2 IF NOT 128TH SKIP
LDX =25 SET TO BEGIN OF BUFF
CONT2 STX WRTI SAVE INDEX
JMP END BYE

*
*
khkkkkkhkhhhhkhkhhhkkhhhkhkhkhkikkkhkhkkhkhhhkkhhiokkhhhkhikkkhhhhhhhhhhhkhkkhkkkhkhikikkhk
*

* THE ROUTINE TO DISPLAY THE DOTS
*

kkkkhkhkkhhkhhkhhkhkhhkhkhhikhhhhhhhhkhkkhkhhhhthkhhhhihhhkhhkhhkkhhkhihkhhkikkhkhhkiihhik
*
*

DISPLA LDX READI

-68=-

LDA HORIZ,X GET HORIZ WORD

AND =$3F MASK OFF TOP TWO

CMP =63 TEST IF BLANK WORD

BEQ END1 IF YES END

LDA VERT,X

CMP =63

BEQ END1

STA OUTV

LDA HORIZ,X

STA OUTH

LDA =$00 SET UNBLANK

STA PIA UNBLANK

LDA =01 SET BLANK

STA PIA BLANK
ENDlI INC READI BUMP TO NEXT WORD

LDA READI GET READ ADDR

CMP =153 TEST IF 128TH ADDR.

BNE END4 IF NOT 128TH SKIP

LDA =0

STA READI SET TO BUFF START
END4 LDA =02

STA SPIAB PULL C KEY DRIVER LOW

LDA SPIAA GET CROSS POINT OF C

AND =02 MASK ALL BUT LAST

BNE DONE IF NOT C KEY THEN CONTINUE

JSR CLEAR CLEAR THE DISPLAY
DONE RTS RETURN

*
*
khkkkhkhhkhkhhhkhhhhhkhhkhkhkhhhkhhkkkhikhhhkkhkhxhhkhkkhkhkkkhhkkhhhkhhkkkhikhkhkrxkkkkkkik
x

* THIS ROUTINE CLEARS THE DISPLAY EXCEPT THE REFERENCE MARKS
*

e 3 e o ok e ke ok e ok vk e ke e sk e ke ok e ko e e ok e e e e e e ek ok T ok ke ok e e v e v e ok ok vk e ok ke o e ok e ke 3 ok o e 2k e o ok ok ok o
*

*

CLEAR LDX =25 START INDEX ADDRESS
LDA =63 BLANKING VALUE

LOOop STA HORIZ,X CLEAR THE DOT
INX BUMP TO NEXT
cpX =153
BNE LOOP LOOP TILL DONE 128 DOTS
RTS RETURN

*
*

Jodod Jode de g Jo g e do ko e do g deJe o de de g e g e e de o e de e e de o Ko e S de e g e S e K e e de e de ok e e e e e e o o e de e dede e ok o e de de de Kk e de ke
*

* DELAY ROUTINE TO DWELL ON OUTPUT DOT
*

dkkhkhkhkkkhkkhkhhkhkkhkhhkhhhhhdhhkihhkhkhkhhhkiexkkhhkkiexhhkhkhhkkhhkkhidhkkhkkhihkkkkik
*

*
DELAY DEY

BNE DELAY
RTS

=69

*
*
e s e o e F 5 e e e 6 Jo 6 e do de Jo e o e de e e o e K o e e e de e Fe o e o e e e Fe do 3 e e e ks o Ko ok e e e Yok e o e e e e e de e e e e e e K Fo K ke e ek
*

* INTERUPT ROUTINE
*

e v e e e o Fo Je e o de de e o e o do Fo Koo g K e de v e e v e K e e e ok o A e Fe e e e do o e e e e de v e e o v e oK e e e o e v vk e e e e ke e e e de ek ko
*

*

NMI PHA SAVE A
TXA GET X
PHA SAVE X
LDA UART READ UART INPUT
STA TEMP SAVE TO TEMP MEMORY
LDA STATUS GET STATUS
ORA =380 SET DATA AVAIL,
STA STATUS SAVE STATUS
LDA =00
STA PAB
LDA =01
STA PAB
PLA GET SAVED X
TAX RETURN TO X
PLA GET SAVED ACCUM.
RTI RETURN FROM INTERUPT

*
*
*

VERT2 HEX 1F,1F,2C,36,34,36,2C,1F,11,08,04,08,11
HEX 1F,26,2B,2D,2B,26,1F,18,13,11,13,18

HORIZ2 HEX 1F,3A,36,2C,1F,11,08,04,08,11,1F,2C,36
HEX 2D,2B,26,1F,18,13,11,13,18,1F, 26,28
ORG VEC+$07FA

NMIVEC ADR NMI

RSTVEC ADR VEC

IRQVEC ADR VEC
END

-70-

Appendix G. Photographs. (Photos by James Nickum)

Uplink Processor Hardware, Transmission Portion, Interfaced with the

Stormscope (Modem and VHF Transmitter Not Shown).

-71-

Close-Up of Uplink Processor Board, Receiver Portion.

-72-

Uplink Processor Hardware, Receiver Portion, and Oscilloscope Display
(The Gandalf Line Driver Was Replaced with a ComData Receiving Modem,
VHF Receiver Not Shown).

-73-

Close=Up of Uplink Processor Board, Transmission Portion.

—74-

ey
o 4

Vetrtzvevey

ASSEMBLED
N AT

Close-Up of Stormscope Interface Board.

-75-

The Oscilloscope (Left) Displays the Transmitted Stormscope Data
as Seen on the Stormscope Display (Right).

76

